Passive House Planning Package

Achieving the major decrease in heating energy consumption required by the standard involves a shift in approach to building design and construction. Design is carried out with the aid of the ‘Passivhaus Planning Package’ (PHPP), and uses specifically designed computer simulations.
To achieve the standards, a number of techniques and technologies are used in combination:

Passive solar design
Following passive solar building design techniques, where possible buildings are compact in shape to reduce their surface area, with windows oriented towards the equator (south in the northern hemisphere and north in the southern hemisphere) to maximize passive solar gain. However, the use of solar gain is secondary to minimizing the overall energy requirements.
Passive houses can be constructed from dense or lightweight materials, but some internal thermal mass is normally incorporated to reduce summer peak temperatures, maintain stable winter temperatures, and prevent possible over-heating in spring or autumn before normal solar shading becomes effective.

Passivhaus buildings employ superinsulation to significantly reduce the heat transfer through the walls, roof and floor compared to conventional buildings. A wide range of thermal insulation materials can be used to provide the required high R-values (low U-values, typically in the 0.10 to 0.15 W/(m².K) range). Special attention is given to eliminating thermal bridges.
A disadvantage resulting from the thickness of wall insulation required is that, unless the external dimensions of the building can be enlarged to compensate, the internal floor area of the building may be less compared to traditional construction.
In Sweden, to achieve passive house standards, the insulation thickness would be 335 mm (about 13 in) (0.10 W/(m².K)) and the roof 500 mm (about 20 in) (U-value 0.066 W/(m².K)).

Advanced window technology

Typical Passivhaus windows
To meet the requirements of the Passivhaus standard, windows are manufactured with exceptionally high R-values (low U-values, typically 0.85 to 0.70 W/(m².K) for the entire window including the frame). These normally combine triple-pane insulated glazing (with a good solar heat-gain coefficient, low-emissivity coatings, argon or krypton gas fill, and ‘warm edge’ insulating glass spacers) with air-seals and specially developed thermally-broken window frames.
In Central Europe, for unobstructed south-facing Passivhaus windows, the heat gains from the sun are, on average, greater than the heat losses, even in mid-winter.

Building envelopes under the Passivhaus standard are required to be extremely airtight compared to conventional construction. Air barriers, careful sealing of every construction joint in the building envelope, and sealing of all service penetrations through it are all used to achieve this.

Mechanical heat recovery ventilation systems, with a heat recovery rate of over 80% and high-efficiency electronically commutated motors (ECM), are employed to maintain air quality, and to recover sufficient heat to dispense with a conventional central heating system. Since the building is essentially airtight, the rate of air change can be optimized and carefully controlled at about 0.4 air changes per hour. All ventilation ducts are insulated and sealed against leakage.
Although not compulsory, earth warming tubes (typically ≈200 mm (~7,9 in) diameter, ≈40 m (~130 ft) long at a depth of ≈1.5 m (~5 ft)) are often buried in the soil to act as earth-to-air heat exchangers and pre-heat (or pre-cool) the intake air for the ventilation system. In cold weather the warmed air also prevents ice formation in the heat recovery system’s heat exchanger.
Alternatively, an earth to air heat exchanger, can use a liquid circuit instead of an air circuit, with a heat exchanger (battery) on the supply air.

Space heating
In addition to the heat exchanger (centre), a micro-heat pump extracts heat from the exhaust air (left) and hot water heats the ventilation air (right). The ability to control building temperature using only the normal volume of ventilation air is fundamental.
In addition to using passive solar gain, Passivhaus buildings make extensive use of their intrinsic heat from internal sources – such as waste heat from lighting, white goods (major appliances) and other electrical devices (but not dedicated heaters) – as well as body heat from the people and animals inside the building. (People, on average, emit heat energy equivalent to 100 Watts, see Radiation emitted by a human body).
Together with the comprehensive energy conservation measures taken, this means that a conventional central heating system is not necessary, although they are sometimes installed due to client skepticism.
Instead, Passive houses sometimes have a dual purpose 800 to 1,500 Watt heating and/or cooling element integrated with the supply air duct of the ventilation system, for use during the coldest days. It is fundamental to the design that all the heat required can be transported by the normal low air volume required for ventilation. A maximum air temperature of 50 °C (122 °F) is applied, to prevent any possible smell of scorching from dust that escapes the filters in the system.
The air-heating element can be heated by a small heat pump, by direct solar thermal energy, annualized geothermal solar, or simply by a natural gas or oil burner. In some cases a micro-heat pump is used to extract additional heat from the exhaust ventilation air, using it to heat either the incoming air or the hot water storage tank. Small wood-burning stoves can also be used to heat the water tank, although care is required to ensure that the room in which stove is located does not overheat.
Beyond the recovery of heat by the heat recovery ventilation unit, a well designed Passive house in the European climate should not need any supplemental heat source if the heating load is kept under 10W/m² .
Because the heating capacity and the heating energy required by a passive house both are very low, the particular energy source selected has fewer financial implications than in a traditional building, although renewable energy sources are well suited to such low loads.

Lighting and electrical appliances
To minimize the total primary energy consumption, low-energy lighting (such as compact fluorescent lamps or solid-state lighting), and high-efficiency electrical appliances are normally used

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s